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The most general description of the classical world is in terms of local densities
(such as number, momentum, energy), and these typically evolve according to
evolution equations of hydrodynamic form. To explain the emergent classicality
of these variables from an underlying quantum theory, it is therefore necessary
to show, first, that these variables exhibit negligible interference, and second,
that the probabilities for their histories are peaked around hydrodynamic evolution.
The implementation of this program in the context of the decoherent histories
approach to quantum theory is described. It is argued that, for a system of weakly
interacting particles, the eigenstates of local densities (averaged over a sufficiently
large volume) remain approximate eigenstates under time evolution. This is a
consequence of their close connection with the corresponding exactly conserved
(and so exactly decoherent) quantities. The subsequent derivation of hydrody-
namic equations from decoherent histories is discussed.

If the universe is described at the most fundamental level by quantum
theory, why is it so very nearly classical? There are very many aspects to
the issue of emergent classicality (see, for example, ref. 1 for an overview),
but crucial to most of them is the demonstration that certain types of quantum
states of the system in question exhibit negligible interference. Initial superpo-
sitions of such states may therefore be effectively replaced by statistical
mixtures. This, loosely speaking, is decoherence, and has principally been
demonstrated for the situation in which there is a distinguished system, such
as a particle, coupled to its surrounding environment [2, 3].

Most generally, decoherence typically comes about when the variables
describing the entire system of interest naturally separate into “slow” and
“fast,” whether or not this separation corresponds to, respectively, system
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and environment.2 If the system consists of a large collection of interacting
identical particles, as in a fluid, for example, the natural set of slow variables
are the local densities: energy, momentum, number, charge, etc. These vari-
ables, in fact, are also the variables which provide the most complete descrip-
tion of the classical state of a fluid at a macroscopic level.

The most general demonstration of emergent classicality therefore con-
sists in showing that, for a large collection of interacting particles described
microscopially by quantum theory, the local densities become effectively
classical. Although one might argue that the system–environment mechanism
might play a role, since the collection of particles is coupled to each other,
decoherence comes about in these situations for a different reason: it is
because the local densities are almost conserved if averaged over a sufficiently
large volume [5]. Hence, the approximate noninterference of local densities
is due to the fact that they are close to a set of exactly conserved quantities,
and exactly conserved quantities obey superselection rules.

Intuitively appealing though this argument is, it is clearly a quantitative
issue. The object of this paper is to show that, under certain reasonable
conditions, local densities averaged over a sufficiently large volume are
indeed approximately decoherent as a result of their close connection to
exact conservation.

We will approach the question using the decoherent histories approach
to quantum theory [5–8], which has proved particularly useful for discussing
emergent classicality in a variety of contexts. The central object of interest
is the decoherence functional,

D(a, a8) 5 Tr(Pane
2(i/")H(tn2tn21) ??? Pa2e

2(i/")H(t22t1)Pa1.C&

3 ^C.Pa81e
(i/")H(t22t1)Pa82 ??? Pa8n21e

(i/")H(tn2tn21)) (1)

The histories are characterized by the initial state .C& and by the strings of
projection operators Pa at times t1 to tn (and a denotes the string of alternatives
a1 ??? an). Intuitively, the decoherence functional is a measure of the interfer-
ence between pairs of histories a, a8. When it is zero for a Þ a8, we say
that the histories are decoherent and probabilities p(a) 5 D(a, a) obeying
the usual probability sum rules may be assigned to them. One can then ask
whether these probabilities are strongly peaked about trajectories obeying
classical equations of motion. For the local densities, these equations will be
hydrodynamic equations, and these and closely related aspects of emergent
classicality have been pursued at greater length elsewhere [4, 9, 10].

2 See ref. 4 for a discussion of the conditions under which the total Hilbert space may be written
as a tensor product of system and environment Hilbert spaces.
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We consider the class of systems which are described at the microscopic
level by a Hamiltonian of the form

H 5 o
j 1p2

j

2m
1 o

l.j
f(.q j 2 ql.)2 (2)

For definiteness, we will concentrate on the case of a weakly interacting
dilute gas, making brief reference to a one-dimensional chain of oscillators,
but it will be clear that the physical ideas are reasonably general. The local
densities of interest are the number density n(x), the momentum density g(x),
and the energy density h(x), defined by

n(x) 5 o
j

d(x 2 q j) (3)

g(x) 5 o
j

pj d(x 2 q j) (4)

h(x) 5 o
j 1p2

j

2m
1 o

l.j
f(.q j 2 ql.)2d(x 2 q j) (5)

(suitably ordered, in the quantum case). We are interested in local densities
smeared over a volume V. The effect of this is to replace the delta functions
with a window function, denoted dV , which is zero outside V and 1 inside.
It is also useful to work with the Fourier transforms of the local densities,
denoted n(k), g(k), h(k). So, for example, the local number density at wave-
length k is

n(k) 5 o
j

eik?qj (6)

Exact conservation is obtained in the limit k 5 .k. → 0, or V → `, in (3)–(5).
We would like to compute the decoherence functional for histories

consisting of projections onto the operators (3)–(5). (The construction of the
projectors is described in more detail in ref. 10). In the case of exact conserva-
tion, k 5 0, we have exact decoherence simply because the projectors in Eq.
(1) all commute with H and with each other [11]. Our main task is therefore
to show that as k increases from zero, there is still a nontrivial regime in
which decoherence is approximately maintained.

A significant result in this direction has been established already by
Calzetta and Hu for the case of local temperature T(x) obeying the diffusion
equation [12]. They took their initial state to be close to the equilibrium state,
and worked backward from the diffusion equation plus fluctuations to deduce
the influence functional it must have arisen from, from which the degree
of decoherence could be deduced. Here, by contrast, initial macroscopic
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superposition states are considered. A more detailed comparison of these two
approaches is certainly of interest.

We begin by rewriting the exact conservation case in a simple way
that makes its generalization to locally conserved quantities more apparent.
Suppose the histories are projections onto some conserved quantity Q. Let
the initial state be a superposition of eigenstates of Q,

.C& 5
1

!2
(.a& 1 .b&) (7)

where ^a.b& 5 0 and

Q̂.a& 5 a.a&, Q̂.b& 5 b.b& (8)

Since the Pas are projections onto Q, Pa either annihilates or preserves .a&
and .b&. Take the case of a history with just two moments of time (the
generalization to more times is trivial). The only nonzero off-diagonal terms
of the decoherence functional are of the form

D(a, a8) 5 1–2 Tr(Pa2e
2(i/")Ht.a&^b.e(i/")Ht)

5 1–2 Tr(Pa2.at&^bt.) (9)

But Q is conserved, hence [Pa2, H ] 5 0 and

Pa2.at& 5 Pa2e
2(i/")Ht.a&

5 e2(i/")HtPa2.a& 5 .at& (10)

(or equals zero if a2 does not correspond to a). It follows that

D(a, a8) 5 1–2 Tr(Pa2.at&^bt.)

5 ^bt.at& 5 ^b.a& 5 0 (11)

and therefore we have decoherence.
Now suppose that the operator Q is one of the local densities (3)–(5),

so is no longer exactly conserved. The steps up to Eq. (9) still hold. But to
go further, we need to know how the eigenstates of the local densities behave
under time evolution. A reasonable supposition, which will be justified, is
the following. Let us suppose that under time evolution, the eigenstates of
Q remain approximate eigenstates. That is, we initially have (7), but under
evolution to time t,

Q̂.at& ' ^Q&.at& (12)

or, more precisely,
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(DQ)2

^Q&2 ¿ 1 (13)

i.e., the state remains strongly peaked in the variable Q under time evolution.
The states are then approximate eigenstates of the projectors, so that in place
of Eq. (10), we have the approximate result Pa2.at& ' .at& (or equals zero)
as long as the width of the projection is much greater than the uncertainty
(DQ)2. Hence Eq. (11) follows approximately, and we get approximate deco-
herence to the extent that the approximation (13) holds.

The key point is therefore the following: approximate decoherence is
assured for histories of operators Q whose eigenstates have the property that
they remain strongly peaked in Q under time evolution, as characterized by
(13). To demonstrate decoherence of the local densities, therefore, we need
only find their eigenstates, and show that they satisfy the localization property
(13) under time evolution. (Note, incidently, that the above argument actually
assures decoherence of any variables Q satisfying the localization property.
The particular significance of the local densities is that they are continuous
functions of the coarse graining scale k, so are guaranteed to satisfy the
requisite property if k is sufficiently close to zero.)

Since the three operators (3)–(5) do not commute, exact simultaneous
eigenstates cannot be found. However, there are approximate simultanous
eigenstates. For weak interactions, they are products of N identical terms,

.C& 5 .c& ^ .c& ^ ??? ^ .c& (14)

and are approximate eigenstates of all three operators for large N. The proof
of this statement involves considering, for the local number density, for
example, the object (Dn(x))2/^n(x)&2, and showing that it goes like 1/N for
large N (see ref. 10, for example). It is essentially the central limit theorem
(see also ref. 13). For the number and momentum density it relies on the
fact that they are sums of identical one-particle operators. For the local energy
density, it additionally requires the smearing volume to be sufficiently large
compared to some length scale indicated by the interactions. Some tuning
of the state .c& can be carried out to ensure that (14) is an optimal approximate
eigenstate of all the local densities, but this will not be done here. [Also, the
passage to exact eigenstates of n(k), g(k), h(k) as k ➞ 0 can be seen explicitly if
the one-particle states .c& are taken to be one-particle momentum eigenstates.]

The question is now what happens to the eigenstates (14) of the local
densities under time evolution by the Hamiltonian (2)? Consider first the
trivial but enlightening case in which there no interactions. In this case, the
time-evolved eigenstates .at& remain of the product form (14), so they are
still approximate eigenstates of the local densities (but with a time-evolved
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eigenvalue) for the same reasons as above. Hence there is approximate
decoherence.

Decoherence in the noninteracting case comes about for two reasons.
First, it is due to the fact that a state of the form (14) will remain strongly
peaked about the average values of the local densities, n(x), g(x), h(x), under
time evolution, and thus the state is essentially undisturbed by the projectors
(as long as their widths are sufficiently large). The strong peaking follows
from the assumption of large N and from the fact that the local density
operators are sums of identical one-particle operators. Second, it is due to
the almost trivial fact that the orthogonality of the two elements of the initial
state is preserved by unitary evolution.

This second fact is important because the first one is not always sufficient
to guarantee decoherence. Although the state remains strongly peaked about
the average values of the local densities, these average values do not necessar-
ily obey deterministic equations. In the case of histories characterized by
number density only, for example, ^n(x)& at time t is not uniquely determined
by ^n(x)& at the initial time [in the state (14)]. That is, in Eq. (9), .at& and
.bt& may in fact be peaked about the same value of number density, even
though the initial values are different. The decoherence is therefore not in
fact due to an approximate determinism (such as that used in the phase space
histories of Omnès [7]). It is necessary only that the evolved states are
essentially undisturbed by the projectors, and therefore that the two orthogonal
components of the initial state are eventually overlapped at the final time,
as in Eq. (11), to give zero.

The next and most important task is to show that the above story is in
fact still true, with qualifications, in the presence of interactions. The complete
description of N interacting particles is generally extremely involved, but we
can make some progress by restricting attention to a sufficiently dilute gas
of weakly interacting components, and then making two assumptions which
are standard in kinetic theory and nonequilibrium statistical mechanics [e.g.,
14]. It is notationally convenient in what follows to work with a Wigner
function rather than quantum state. Hence associated with the full N-particle
wave function is an N-particle Wigner function WN (p1, q1, . . . , pN , qN). For
a dilute, weakly interacting gas, it is reasonable to assume that three-particle
correlations are negligible. This is our first assumption. It means that all the
physics is contained in the one-and two-particle reduced Wigner functions
W1(p1, q1) and W2(p1, q1, p2, q2). All higher order reduced Wigner functions
will reduce to products of these.

We again take as our initial state the product state (14) (which is still
an approximate eigenstate in the interacting case), and let it evolve, so
correlations will develop. The degree to which the particles become correlated
is contained in the two-particle distribution W2 of the evolved eigenstate. On
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general grounds, we expect that the interparticle correlations will only be
important on some length scale L, and beyond that length scale, they will be
uncorrelated. That is, we will assume that

W2(p1, q1, p2, q2) ' W1(p1, q1)W1(p2, q2) (15)

for .q2 2 q1. . L, and otherwise W2 will have a form indicating nontrivial
correlations. This is our second assumption. It is physically reasonable, and
it is in fact a key assumption in the derivation of the Boltzmann equation [14].

Note that the assumption (15) would not necessarily be appropriate for
all possible initial quantum states. One could construct initial quantum states
which would possess or develop nontrivial long-range correlations, for which
this assumption may never hold. However, as seen in the noninteracting case,
to demonstrate decoherence we only need to consider the time evolution of
the special class of initial states which are eigenstates of the local densities.
These particular initial states, which are of the form (14), approximately, do
not have long-range correlations. It is therefore very plausible, at least for a
dilute, weakly interacting gas, that they will develop only limited correlations
under time evolution and the assumption (15) will hold.

Given the above assumptions, it is now reasonably straighforward to
argue that the state is still strongly peaked about the average values of the
local densities, as long as V À L3. For example, for the number density,
we have

^n(x)& 5 o
j

^dV (q j 2 x)& 5 N #
V

d 3q p(q) (16)

where p(q) is the one-particle probability distribution of q (obtained by
integrating the one-particle Wigner function over p). Similarly,

^n2(x)& 5 o
jl

^dV (q j 2 x)dV (ql 2 x)&

5 N^dV& 1 (N 2 2 N )^dV (q1 2 x)dV (q2 2 x)& (17)

where we have used d2
V 5 dV, and also an assumption of identical particles

to reduce the sum over j, l to particles labeled 1 and 2. We now have

(Dn(x))2 5 ^n2(x)& 2 ^n(x)&2

5 N 2(^dV (q1 2 x)dV (q2 2 x)& 2 ^dV&2)

1 N(^dV& 2 ^dV (q1 2 x)dV (q2 2 x)&) (18)

If there is no correlation at all between the particles, the coefficient of N 2

would vanish, so (Dn(x))2/^n(x)&2 would go like 1/N, which goes to zero as
N ➞ `. This is the standard central limit theorem result indicated earlier for
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the noninteracting case. With interactions, the coefficient of N 2 is no longer
zero. We now need to show, therefore, that this term is still sufficiently small
for (Dn(x))2/^n(x)&2 to remain small as N ➞ `. Introducing the two-particle
distribution p(q1, q2) (obtained by integrating p1, p2 out of W2), we can
readily show that the leftover terms as N → ` are

(Dn(x))2

^n(x)&2 5
#

V

d 3q1 #
V

d 3q2 ( p(q1, q2) 2 p(q1)p(q2))

1#
V

d 3q p(q)2
2 (19)

This is clearly zero if there are no correlations. In the interacting case we
use the assumption (15), which implies that

p(q1, q2) ' p(q1)p(q2) (20)

for .q1 2 q2. . L, and otherwise nontrivial correlations exist. Hence the
integral in the numerator takes contributions only from the region .q1 2 q2.
, L.

To see that (19) is small, note that in the numerator, the integral is over
a volume V 2 in the six-dimensional two-particle configuration space. If V ¿
L3, the factorization of p(q1, q2) for .q1 2 q2. . L makes no difference, since
q1 and q2 can never be far enough apart in the integrand (assuming V is
regular in shape). However, if V À L3, the V 2-sized integration region is
substantially reduced in size to V 3 L3. On dimensional grounds the numerator
is therefore proportional to a number of order VL3 and the denominator to
V 2 (perhaps with other factors common to both). This means that

(Dn(x))2

(n(x))2 , L2

V
(21)

This order-of-magnitude estimate becomes exact if we assume that the proba-
bilities are constant in the region of nontrivial correlation (another common
assumption of kinetic theory [14]). Hence the state will be strongly peaked
about the average of n(x) if V À L3.

In the one-dimensional oscillator chain model considered in ref. 15, the
uncertainty in n(k) [the one-dimensional version of Eq. (6)] can be computed
explicitly in the special case of a Gaussian state. It is

(Dn(k))2 5 o
N

j51
o
N

l51
^eikqj&^e2ikql&(ek2s(qj,ql) 2 1) (22)

where s(qj , ql) 5 ^qj ql& 2 ^qj &^ql& measures the degree of correlation between
different particles in the chain. As k increases from zero, the leading order
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terms in (22) are of the form (Dn(k))2 5 k2(DX )2, where X 5 (j qj (the
center-of-mass coordinate), and since ^n(k)& , N, we have

(Dn(k))2

.^n(k)&.2 , k2(DX )2

N 2 (23)

This will be very small as long as k21 is much larger than the length scale
of a single particle. [Dn(k)]2 starts to grow very rapidly with k, and (23) is
no longer valid when k21 becomes less than the correlation length indicated
by s(qj , ql). Hence the state is strongly peaked about the mean as long as
the coarse-graining length scale k21 remains much greater than the correlation
length of the time-evolved local density eigenstates. This correlation length
is considered in ref. 15 and found to be generally very small compared to
the system size. A simple field theory model is also considered in ref. 15,
confirming many of the expected features outlined here.

It is possible to see on physical grounds why one expects a result of
the form (21) to hold quite generally. In the noninteracting case we used the
central limit theorem result that (Dn)2/^n&2 goes like 1/N. In the interacting
case, the state is no longer of the product form (14), but an analagous result
still holds. The point is that the correlations that develop extend only over
a (typically small) volume of size L3, so the system breaks up into a large
number of essentially identical uncorrelated regions of this size. Therefore
each smearing volume V, if much greater than L3, contains of order V/L3

identical uncorrelated regions each of which contributes equally to the local
density averaged over V. Loosely speaking, a central limit theorem-type result
again applies, not to the N uncorrelated particles in the same state, but to
the V/L3 uncorrelated regions. So 1/N is replaced by L3/V in the central limit
theorem, and hence the above result.

Similar results hold for the local momentum and energy density. We
have therefore demonstrated the desired result: eigenstates of the coarse-
grained local densities remain approximate eigenstates under time evolution
as long as the smearing volume is much greater than the correlation volume
of these states. Decoherence of these variables then follows.

We now briefly consider the probabilities for histories. They are strongly
peaked at each moment of time about the average values, ^n(x, t)&, ^g(x, t)&,
^h(x, t)&, averaged in a local density eigenstate. The hydrodynamic equations
(or even a closed set of equations) do not necessarily follow, however, since
these require a local equilibrium initial state [16, 14], but we outline how
this might come about.

The averages of the local densities depend only on the one-particle
Wigner function (with a small correction depending on the two-particle func-
tion in the case of local energy density), hence the evolution equation of the
local densities can be determined by obtaining an evolution equation for the
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one-particle Wigner function W1. With a local density eigenstate as initial
state, and with the two assumptions utilized above, we expect this evolution
equation is the Boltzmann equation. We therefore evolve W1, subject to the
initial condition that it be equal to the one-particle Wigner function of a local
density eigenstate. This initial Wigner function is not of local equilibrium
form, but it is reasonable to expect that it will rapidly approach local equilib-
rium form under evolution according to the Boltzmann equation, and thereaf-
ter retain that form. [The temperature, chemical potential, etc., of the local
equilibrium state will be determined by the average values ^h(x, t)&, etc.]
Hence, except for a short initial period during which the initial state settles
down to local equilibrium form, the probabilities for histories will be peaked
about hydrodynamic equations.

Some of these features can be seen in some detail in ref. 10, where the
emergence of the diffusion equation was considered. The system studied was
a collection of N foreign noninteracting particles in a background fluid.
Decoherence was therefore provided largely by the fluid in this case, rather
than by conservation, but the interest of the model is that it gives an explicit
picture of the emergence of a hydrodynamic equation. Each foreign particle
behaves like a quantum Brownian particle, whose evolution equation is well
known. An initial state of the form (14) for the N foreign particles evolves
into a mixed state of the form of an N-fold product,

r 5 r1 ^ r1 ??? ^ r1 (24)

where each one-particle density operator r1 describes quantum Brownian
motion. From the Wigner function of r1 it is readily shown that the one-
particle position distribution obeys the diffusion equation at long times, from
which it readily follows that the N-particle number density n(x) also obeys
the diffusion equation. This model is therefore a kind of “half-way house”
between the decoherence-through-environment and decoherence-through-
conservation models, but it helps to complete the general picture.

Summarizing, the final picture we have is therefore as follows. An initial
state consisting of a superposition of local density eigenstates may be treated
as a mixture of the same states, since they are decoherent. Each state separately
will give probabilities peaked about hydrodynamic equations, with particular
initial values of phenomenological parameters such as temperature, etc., and
these will be different for each element of the mixture. We therefore have a
statistical mixture of trajectories, each evolving according to hydrodynamic
equations, but with different phenomenological parameters, i.e., to very differ-
ent macroscopic states. More details of this work may be found elsewhere
[15, 17].
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